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Abstract
We show that a result of symplectic topology, Gromov’s non-squeezing
theorem, also known as the ‘principle of the symplectic camel’, can be used
to quantize phase space in cells. That quantization scheme leads to the correct
energy levels for integrable systems and to Maslov quantization of Lagrangian
manifolds by purely topological arguments. We finally show that the argument
leading to the proof of the non-squeezing theorem leads to a classical form of
Heisenberg’s inequalities.

PACS numbers: 03.65.Vf, 02.40.-k, 03.65.Sq, 03.70.+k

1. Introduction

The common conception of Liouville’s theorem is that under a Hamiltonian flow a volume in
phase space can be made as thin as one likes provided the volume remains constant (see [6];
also [18]). Thus, it would be possible to pass the proverbial camel through the eye of a needle
no matter how small the eye! This is in fact not true for the ‘symplectic camel’. For a given
Hamiltonian process in phase space, it is not possible to shrink a cross-section defined by
conjugate coordinates like x and px to zero. In other words, we have a minimum cross-
sectional area within a given volume that cannot be shrunk further: it is as if the uncertainty
principle had left a ‘footprint’ in classical mechanics—or, perhaps, as if the symplectic camel
had left a footprint in quantum mechanics . . . . This is indeed a very surprising phenomenon,
especially since it ceases to hold if one replaces the x, px plane by any other plane of non-
conjugate variables (e.g., x, py). It is in fact a consequence of a deep theorem from symplectic
topology, which was proved by Gromov [11] in the mid 1980s, and called the ‘non-squeezing’
theorem, or the ‘principle of the symplectic camel’.

This principle—which seems not to be widely known outside a few specialized
mathematical circles—highlights the deep difference between volume preservation and
symplectic invariance.

The aim of this paper is to show that the non-squeezing theorem leads can be used to
mathematically justify a quantization of phase space in ‘cells’ C(h) on the boundary of which
every periodic orbit has exactly action 1

2h. These cells can be unbounded and infinite volume,
which makes them totally different from the usual ‘quantum cells’ used in thermodynamics or
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quantum chemistry. We will see that this particular quantization scheme leads, when applied
to the completely integrable systems of mechanics, to the correct semi-classical ground energy
levels (and thus to the exact quantization of the harmonic oscillator).

In section 2 we review the non-squeezing theorem and examine some of its mathematical
consequences; we also define the related notion of symplectic capacity;

In section 3 we briefly discuss the deep relationship between periodic orbits in phase space
and the symplectic capacity of convex subsets.

In section 4 we quantize phase space in cells: quantum cells are convex (possibly
unbounded) subsets of phase space, having symplectic capacity h

2 , and postulate that there
can be no periodic orbits inside such a cell in quantum mechanics. This leads us to the correct
ground-energy levels for the n-dimensional anisotropic harmonic oscillator.

In section 5 we show how the notion of quantum cell leads to the Keller–Maslov
quantization of Lagrangian manifolds. The argument we use is purely topological, i.e. we do
not need to invoke, as in the usual approaches, the WKB approximation.

In section 6, we show, using the techniques leading to the proof of the non-squeezing
theorem, that there is a classical form of Heisenberg’s inequalities. (That there is a deep
relation between the symplectic camel and the uncertainty principle was already noted and
discussed by Viterbo in [24].)

We conclude by discussing some open questions and possible extensions.

2. The non-squeezing theorem

We begin by stating Gromov’s theorem precisely. We will use the generalized coordinates
x = (x1, . . . , xn) and p = (p1, . . . , pn). Consider the phase space ball

B(R) = {
(x, p) : |x|2 + |p|2 � R2

}
and the ‘symplectic cylinder’

Zj(r) = {
(x, p) : x2

j + p2
j � r2

}
(1 � j � n) based on the xj , pj plane. Recall that a symplectomorphism (or canonical
transformation) is a diffeomorphism of phase space whose Jacobian matrix is symplectic at
every point.

Theorem 1 (Gromov). There exists a symplectomorphism f of R
n
x×R

n
p sendingB(R) inside

Zj(r) if and only if R � r:

f (B(R)) ⊂ Zj(r) ⇐⇒ R � r.

It is essential for the validity of the theorem to assume thatZj(r) is a symplectic cylinder in
theorem 1. Here is a counter-example: every symplectic mapping mλ : (x, p) �−→ (λx, p/λ)

sends B(R) into a cylinder {(x, p) : x2
1 + p2

2 � r} for all R provided that λ � R/r . On the
other hand, it is always possible to squeeze the ball B(R) inside a symplectic cylinder Zj(r)
if one uses general volume-preserving diffeomorphisms.

No ‘easy’ proofs of Gromov’s theorem are known, and we refer to Gromov’s original
paper [11], or to Hofer–Zehnder [12]. (Viterbo [23] has given an interesting alternative proof
of Gromov’s theorem based on the notion of generating function.) Here is, however, a semi-
heuristic justification of this result. We give it for n = 2, but the argument goes through in an
arbitrary number of dimensions. Consider the isotropic two-dimensional harmonic oscillator
with Hamiltonian

H = 1
2

(
p2
x + p2

y + x2 + y2
)
.
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The solutions of the associated Hamilton equations are the 2π -periodic functions:

x = x ′ cos t + p′
x sin t y = y ′ cos t + p′

y sin t

px = −x ′ sin t + p′
x cos t py = −y ′ sin t + p′

y cos t.

Let us now fix the initial point (x ′, y ′, p′
x, p

′
y) on the sphereS(R)with radiusR in R

2
x,y×R

n
px,py

,
centred at the origin. Since H is a constant of the motion we will have

p2
x + p2

y + x2 + y2 = R2

for all times, so that the orbit will stay forever on the sphere (all such orbits are in fact the big
circles of the sphere). For one period, the action of such an orbit isπR2. Set now x ′2 +p′2

x = r2;
then the initial point (x ′, y ′, p′

x, p
′
y) is on the cylinder

C(r) = {
(x, y, px, py) : x2 + p2

x = r2
}

and the whole orbit lies on that cylinder, and winds around it; the action for a period is this
time πr2 (notice that if we had chosen instead a cylinder based on the plane x, y, then the
orbits would have been straight lines, and hence not periodic). Suppose now that we deform
the sphere S(R), using symplectomorphisms (for instance, a Hamiltonian flow), so that it ‘fits
exactly’ inside the cylinderC(r), touching it along a circle. Action being a symplectic invariant
(see e.g. [1]), we must have πR2 = πr2, so that R = r .

Gromov’s theorem implies (and is, in fact, equivalent to (see [9])):

Theorem 2. Let Prj be the projection of phase space on the symplectic plane Rxj ×Rpj . Then,
for every symplectomorphism f , we have

Area Prj f (B(R)) � πR2. (1)

Proof. The ‘shadow’ Prj f (B(R)) is a compact and connected submanifold of Rxj ×Rpj with
smooth boundary γ . Setting

Area(Prj f (B(R))) = πr2.

Prj f (B(R)) is diffeomorphic to the discDj(r) : x2
j +p2

j � r2. Let� be a volume-preserving
diffeomorphism � : Prj f (B(R)) −→ Dj(R) (the existence of such a � is guaranteed
by a famous theorem of Moser [4, 17]). Define now a diffeomorphism g of R

n
x × R

n
p by

g(x ′, p′) = (x, p) where

xk = x ′
k pk = p′

k if k = j

(xj , pj ) = �(x ′
j , p

′
j ).

Since � is area preserving we have dpj ∧ dxj = dp′
j ∧ dx ′

j so that g is in fact a
symplectomorphism. Let now T (r) be the cylinder orthogonal to the xj , pj plane and whose
generators pass through the boundary γ of Prj f (B(R)): T (r) is thus a cylinder in phase space
containing f (B(R)), and this cylinder is transformed into Zj(r) by the symplectomorphism
g. But then

g(f (B(R))) ⊂ Zj(r)

so that we must have R � r in view of Gromov’s theorem; the inequality (1) follows. �

Let D be a subset of phase space R
n
x × R

n
p. We will call symplectic radius of D

the supremum of all r such that we can send the phase space ball B(r) inside D using a
symplectomorphism. We will call the symplectic capacity of D, and denote by Cap(D) the
number πr2. (The notion of symplectic capacity was first introduced by Ekeland and Hofer
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in [5]; there are other non-equivalent definitions of symplectic capacities (see [12,14]).) With
these notations, Gromov’s theorem can be restated as

B(R) ⊂ D ⊂ Zj(R) �⇒ Cap(D) = πR2

which shows that sets of very different shapes and volumes can have the same capacity. Also
observe that the capacity of a ball B(R), or of a symplectic cylinder, is independent of the
dimension of the phase space, as it is always πR2. Since the ball B(R) in R

n
x ×R

n
p has volume

πnR2n/n! we thus have

VolB(R) = 1

n!

[
Cap(B(R))

]n
. (2)

In general, 0 � Cap(D) � +∞, however, 0 < Cap(D) < +∞ for all non-empty open
bounded sets D: translating if necessary D, we can namely always find r and R such that
B(r) ⊂ D ⊂ B(R), and hence

πr2 � Cap(D) � πR2.

Here we used implicitly the fact that the symplectic capacity is translation invariant; in fact it
follows from its definition that Cap(f (D)) = Cap(D) for every symplectomorphism f . Let
us finally consider, for further use the ellipsoid

E :
n∑
j=1

1

R2
j

(
p2
j + x2

j

)
� 1

where R1 < · · · < Rn. (One can show that the equation of any ellipsoid in phase space can be
put in this ‘normal form’.) The sequence R = (R1, . . . , Rn) is called the symplectic spectrum
of E ; one proves that (see [12])

Cap E = πR2
1 . (3)

Let us next compare capacity and volume. In the case n = 1 the symplectic capacity as
defined above is just the area

Cap(D) =
∣∣∣∣
∫

D
dp dx

∣∣∣∣
(for the Hofer–Zehnder capacity on symplectic manifolds defined in [12] this result is much
less trivial; see [21], or [12], pp 100–103). That property does not extend to higher
dimensions: if n > 1, (Vol(D))1/n is certainly not a symplectic capacity on R

n
x × R

n
p, because

VolZj(R) = +∞.

3. Periodic orbits

Let H be a Hamiltonian function on phase space R
n
x × R

n
p, and

XH = (∇pH,−∇xH)
the associated Hamilton vector field. We will assume that H is time independent, although
this is by no means an essential restriction for the validity of our results. We will call ‘energy
shell’ a non-empty level set of the Hamiltonian H . We will always denote an energy shell by
the symbol ∂M , whether it is the boundary of a setM or not. Thus

∂M = {
(x, p) ∈ R

n
x × R

n
p : H(x, p) = E

}
.

We notice that any smooth hypersurface of phase space is the energy shell of some
Hamiltonian function H : it suffices to choose for H any smooth function on R

n
x × R

n
p and
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keeping some constant value E on ∂M . It is a remarkable result (well known from the
regularization theory of collision singularities in Kepler’s two-body problem) that Hamiltonian
periodic orbits on a hypersurface are independent of the choice of the Hamiltonian having
that hypersurface as an energy shell. Periodic orbits are thus intrinsically attached to any
hypersurface in phase space: let H and K be two Hamiltonians, and suppose that there exist
two constants h and k such that

∂M = {(x, p) : H(x, p) = h} = {(x, p) : K(x, p) = k} (4)

with ∇(x,p)H = 0 and ∇(x,p)K = 0 on ∂M . Then the Hamiltonian vector fields XH and XK
have the same periodic orbits on ∂M (see [12], chapter 1). In view of this result, in what
follows we will talk about the ‘periodic orbits of a set ∂M’ without singling out a particular
Hamiltonian.

The problem of the existence of periodic orbits on a given energy shell ∂M is a very
difficult one, which has not yet been completely solved. One of the oldest in that direction is
due to Seifert [20] in 1948: he showed that every compact energy shell for a Hamiltonian

H = p2

2m
+ U

contains at least one periodic orbit, provided it is homeomorphic to a convex set. The following
general result is due to Rabinowitz [19] (also see [25]):

Proposition 3. If the boundary of a compact and convex region in phase space is C2, then it
carries at least one periodic orbit.

It turns out that there is a fundamental relation between symplectic capacity and the action
of periodic orbits in phase space.

Theorem 4. LetM be a compact and convex region in phase space. Then every periodic orbit
γ on ∂M is such that∣∣∣∣

∫
γ

p dx

∣∣∣∣ � Cap(M) (5)

and there exists at least one periodic orbit γ0 for which we have the equality∣∣∣∣
∫
γ0

p dx

∣∣∣∣ = Cap(M).

See [12] for a proof of this theorem.

4. Quantized phase space cells

In semi-classical physics and quantum chemistry it is common usage to invoke Heisenberg’s
inequalities to partition phase space in ‘cells’ with volume having an order of magnitude h3.
We propose here a quantization scheme based on the property of the symplectic camel. It
consists in postulating that no periodic orbits exist, in quantum mechanics, on subsets of phase
space with symplectic capacity smaller than 1

2h. This postulate leads to the Keller–Maslov
quantization of Lagrangian manifolds (and, in particular, to the correct ground level energies
for integrable systems)

The fact that the lowest energy levels are different from zero is often motivated in the
physical literature by saying that an observed quantal harmonic oscillator cannot be at rest (that
is, one cannot find x = 0 and p = 0), because this would violate Heisenberg’s uncertainty
principle. We will see that the non-zero ground energy levels actually have a topological origin,
and can be viewed a consequence of the principle of the symplectic camel.
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Definition 5. A quantum cell is a convex subset C(h) of phase space with capacity 1
2h:

Cap C(h) = 1
2h.

Note that we do not require that C (h) be compact: a ball with radius
√
h̄ is a quantum cell,

but so is also any symplectic cylinder with radius
√
h̄. Quantum cells can thus be unbounded,

and have infinite volume. When a cell in 2n-dimensional phase space is the ball B(
√
h̄), then

its volume is

VolB
(√
h̄
) = hn

2nn!
in view of (2). When n = 3, corresponding to the case of the phase space of a single particle,
the volume of such a cell is thus h3/48, and for two particles (n = 6) it is h6/46 080.

We now make the following physical assumption:

Postulate 1. In quantum mechanics the only admissible energy shells are those with capacity
� 1

2h.

I view of the ‘capacity = action’ result of theorem 4, this postulate is immediately
equivalent to:

Postulate 2. In quantum mechanics, the action of any Hamiltonian periodic orbit is at least
1
2h, and a periodic orbit can have action 1

2h.

We will call an orbit γ0 for which equality occurs a minimal periodic orbit:∮
γ0

p dx = 1
2h.

We are going to see that the minimum capacity/action principle suffices to determine the ground
energy levels for the harmonic oscillator in arbitrary dimension n.

Proposition 6. Consider the n-dimensional harmonic oscillator with Hamiltonian

H =
n∑
j=1

1

2mj

(
p2
j +mjωjx

2
j

)
. (6)

The minimum capacity principle implies that the ground energy level of that Hamiltonian is

E0 =
n∑
j=1

1
2 h̄ωj . (7)

Proof. First perform the change of variables

(x, p) �−→ (Lx,L−1p)

where L is the n× n diagonal matrix with diagonal entries (mjωj )−1/2; this changes H into

H ′ =
n∑
j=1

ωj

2

(
p2
j + x2

j

)
.

The change of variables above being symplectic, this transformation does not affect the action
form p dx, and it does not change the symplectic capacities of sets; we may therefore prove
the result with the Hamiltonian H replaced by H ′. We then remark that each orbit

γ :



x1 = x ′

1 cosω1t + p′
1 sinω1t p1 = x ′

1 sinω1t − p′
1 cosω1t

...

xn = x ′
n cosωnt + p′

n sinωnt pn = x ′
n sinωnt − p′

n cosωnt
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lies not only on the ellipsoid which is the energy shell of the HamiltonianH ′, but also on each
of the symplectic cylinders

Zj(Rj ) = {
(x, p) : x2

j + p2
j = R2

j

}
with R2

j = x ′2
j +p′2

j and 1 � j � n. These cylinders carry periodic orbits, and their capacities
must satisfy the conditions

CapZj(Rj ) = πR2
j � 1

2h

in view of postulate 1. If γ0 is a minimal periodic orbit, it will thus satisfy

E(γ0) =
n∑
j=1

1
2ωjR

2
j =

n∑
j=1

1
2 h̄ωj

which is the result predicted by standard quantum mechanics. �

Remark 7. The crucial point in the proof of proposition 6 was that a symplectic cylinder,
albeit unbounded, has the same capacity as the ball to which it is tangent along a circle. If
we had only considered bounded cells (balls or ellipsoids) as objects to ‘quantize’, then the
argument would have led us to

E(γ0) = 1
2 h̄ sup

j

ωj

which is wrong, even when the oscillator is isotropic.

5. Quantization of integrable systems

We now consider a completely integrable system with Hamiltonian H . There are n thus
independent constants of the motion F1 = H,F2, . . . , Fn in involution: {Fj , Fk} = 0.
It is well known (see, e.g., [1]) that given an energy shell H = E, through every point
z0 = (x0, p0) of that energy shell passes a Lagrangian manifold V carrying the orbits passing
through z0. Moreover, when V is connected (which we assume from now on) there exists a
symplectomorphism

f : V −→ (S1)k × R
n−k (8)

where (S1)k is the product of k unit circles, each lying in some coordinate plane xj , pj . In
particular, if V is compact then it is symplectomorphic to the torus T n = (S1)n.

Now, the minimum capacity/action principle imposes a condition on the energy shells of
any Hamiltonian. That condition is that there should be no periodic orbits with action less than
1
2h, and that there should exist ‘minimal periodic orbits’ having precisely 1

2h as action. In fact,
we have the following result which ties the minimum capacity/action principle to the Maslov
index of loops, and thus justifies the ‘EBK’ or ‘Bohr–Sommerfeld’ quantization condition by
a purely topological argument:

Theorem 8. Let V be a Lagrangian manifold associated with a Liouville integrable
Hamiltonian H and carrying minimal action periodic orbits. Then we have

1

2πh̄

∫
γ

p dx − 1

4
m(γ ) = 0 (9)

for every loop on V .
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Proof. Since the actions of loops are symplectic invariants, we can use the
symplectomorphism (8) to reduce the proof to the case V = (S1)k × R

n−k . Since the first
homotopy group of V is

π1((S
1)k × R

n−k) ≡ π1(S
1)k ≡ (Zk,+)

it follows that every loop in V is homotopic to a loop of the type

γ (t) = (γ1(t), . . . , γk(t), 0, . . . , 0) 0 � t � T

where γj are loops on S1: γj (0) = γk(T ). On the other hand, every loop on S1 is homotopic
to a loop

εj (t) = (cosωj t, sinωj t) 0 � t � Tj

so there must exist positive integers µj (1 � j � n) such that

µ1T1 = · · · = µkTk = T .

(In particular, the frequencies ω1, . . . , ωk must be commensurate, i.e. ωi : ωj is rational for
all i and j .) We can thus identify γj with mjεj , the loop εj described ‘µj times’:

µjεj (t) = (cosωj t, sinωj t) 0 � t � T

and it follows that any loop in V = (S1)k × R
n−k is homotopic to a loop

γ = µ1ε1 + · · · + µkεk.

We thus have ∮
γ

p dx =
k∑
j=1

µj

∮
εj

pj dxj

and using the same argument as that leading to the proof of formula (7) in proposition 6, we
must have ∮

γj

pj dxj = 1
2h (1 � j � k)

and hence ∮
γ

p dx = 1
2

( k∑
j=1

µj

)
h.

Now, the Maslov index of such a loop γ in (S1)k × R
n−k is by definition

m(γ ) = 2
k∑
j=1

µj

(see for instance [3, 9]) hence the Keller–Maslov condition (9). �

Remark 9. We urge the reader to note that the quantization condition (9) is about loops in the
Lagrangian manifold, and not about periodic orbits! The quantization condition is independent
of the existence of periodic orbits on the Lagrangian manifold, and thus applies, in particular,
to the case of the n-dimensional harmonic oscillator with incommensurate frequencies.

The important result here above motivates the following definition, which was arrived at
by other means by Maslov [15, 16], following previous trail-blazing work of Keller [13]:
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Definition 10 (Keller–Maslov). A Lagrangian manifoldV is said to satisfy the Keller–Maslov
quantization condition, or to be a quantized Lagrangian manifold, if

1

2πh̄

∫
γ

p dx − 1

4
m(γ ) is an integer (10)

for every loop γ in V .

One easily verifies, by a direct calculation, that in the case of the n-dimensional anisotropic
harmonic oscillator with Hamiltonian (6), the Lagrangian manifolds singled out by the
‘selection rule’ (10) are precisely those on which the energy is given by

EN1,...,Nn =
n∑
j=1

(
Nj + 1

2

)
h̄ωj

which are the correct values predicted by quantum mechanics. For more general Hamiltonians,
condition (10) does not in general yield the correct energy levels.

Remark 11. The step from the ground state to a general excited state involves replacing zero
in the right-hand side of equation (9) by an integer (in equation (10)). While it would be
interesting to give a topological interpretation of this step in terms of Gromov’s theorem, it can
be explained within the framework of semiclassical mechanics in phase space (see [7–9]). The
argument is the following (we restrict ourselves to the one-dimensional harmonic oscillator):
one seeks to define stationary ‘phase space wavefunctions’ of the type

/(θ) = e
i
h̄
ϕ(r,θ)a(r, θ)

√
r dθ

on the phase space trajectories. Here θ is the polar angle, r the radius, a(r, θ) a 2π -periodic
function of θ and ϕ(r, θ) is the action

ϕ(r, θ) =
∫ θ

0
p(θ) dr (θ) = r2

2
(sin θ cos θ − θ).

The argument of dθ is defined by arg dθ = m(θ)π where m(θ) = [θ/2π ] ([·] the integer part
function). The square root

√
r dθ is thus

√
r dθ = i[θ/2π ]π

√
|r dθ |.

Now, if the quantization condition (9) is satisfied we have /(θ + 2π) = /(θ) so the
‘wavefunction’ / is defined on the trajectory itself. However, while (9) is sufficient
for /(θ + 2π) = /(θ) to hold, it is not a necessary condition: we will actually have
/(θ + 2π) = /(θ) on all trajectories satisfying the Keller–Maslov condition (10).

5.1. The uncertainty principle in classical mechanics

Consider now a point in phase space R
n
x × R

n
p, and suppose that by making position and

momentum measurements we are able to find out that this point lies in a ball B with radius R.
Then the ‘range of uncertainty’ in our knowledge of the values of a pair (xj , pk) of position
and momentum coordinates lies in the projection of that ball on the xj , pk plane. Since this
projection is a circle with area πR2, one might thus say that πR2 is a lower bound for the
uncertainty range of joint measurements of xj and pk . Suppose now that the system moves
under the influence of a Hamiltonian flow (ft ). The ball B will in general be distorted by the
flow into a more or less complicated region of phase space, while keeping the same volume.
Since conservation of volume does not imply conservation of shape, a first guess is that one can
say nothing about the time-evolution of the uncertainty range of (xj , pk), which can a priori
become arbitrarily small. This guess is, however, wrong because of Gromov’s theorem: as
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B is getting distorted by the Hamiltonian flow (ft ), the projection Prj (ft (B)) of ft (B) on
each conjugate variable plane xj , pj will, however, never shrink, and always have an area
superior or equal to πR2. This is contrast with the areas of the projections of ft (B) onto the
non-conjugate planes xj , pk (j = k), which can take arbitrarily small values. One can thus say
that the uncertainty range of every pair (xj , pj ) of conjugate variables can never be decreased
by Hamiltonian motion, and this property can of course be viewed as a classical topological
form of Heisenberg’s uncertainty principle. Let us quantify the argument above. Assume H ,
for simplicity, quadratic. We denote by X′

i and P ′
j the stochastic variables whose values are

the results of the measurements, at initial time t ′ = 0, of the ith position and j th momentum
coordinate, respectively. We assume that these variables are independent. Let 4x ′

i = σ(X′
i )

and 4p′
j = σ(P ′

j ) be the standard deviations at time t ′; and 4xi , 4pj those at time t . We ask
the following question:

What happens to 4xi and 4pj during the motion? More precisely what can we
predict about 4xi and 4pj , knowing 4x ′

1, . . . , 4x
′
n, 4p

′
1, . . . , 4p

′
n?

We claim that if the motion is governed by a quadratic Hamiltonian function, then following
result holds:

Proposition 12. Suppose that we have 4p′
j4x

′
j � ε for 1 � j � n. Then we also have

4pj4xj � ε for 1 � j � n and for all times t .

Proof. Since the HamiltonianH is quadratic, the flow consists of symplectic matrices; writing(
x

p

)
=

(
A B

C D

) (
x ′

p′

)
(11)

the coordinates xj , pj are given by the formulae

xj = a · x ′ + b · p′ pj = c · x ′ + d · p′

where (a, b) is the j th line of the matrix s and (c, d) its (n+j)th line. Writing a = (a1, . . . , an),
and so on, we have

(4xj )
2 =

n∑
i=1

a2
i (4x

′
i )

2 + b2
i (4p

′
i )

2

(4pj )
2 =

n∑
i=1

c2
i (4x

′
i )

2 + d2
i (4p

′
i )

2.

(12)

Setting

α = (a14x1, . . . , an4xn) β = (b14p1, . . . , bn4pn)

γ = (c14x1, . . . , cn4xn) δ = (d14p1, . . . , dn4pn)

the formulae (12) can be written

(4xj )
2 = α2 + β2 (4pj )

2 = γ 2 + δ2

and hence, by the Cauchy–Schwartz inequality,

(4pj )
2(4xj )

2 � (α · δ − β · γ )2.
Since we have, by definition of α, β, δ, γ :

α · δ − β · γ =
n∑
i=1

(aidi − bici)4pi4xi



The symplectic camel and phase space quantization 10095

it follows that

4pj4xj �
∣∣∣∣
n∑
i=1

(aidi − bici)
∣∣∣∣ε.

Now, the fact that the flow governing the time evolution of the system is Hamiltonian implies
that the matrix in (11) is symplectic; now(

A B

C D

)
symplectic ⇐⇒

{
ATC,DT B symmetric
ATD − CT B = I

and the condition ATD − CT B = I implies that we must have
n∑
i=1

aidi − bici = 1 (13)

which concludes the proof. �
Remark 13. The last step (formula (13)) in the proof of the proposition is essential, because
it is there were the fact that the motion is Hamiltonian intervenes: if the flow consisted of just
volume-preserving diffeomorphisms, the quantity

a · dT − b · cT =
n∑
i=1

aidi − bici

could priori take any value (even zero). It turns out that the identity formula (13) can be used
to give a proof of the non-squeezing theorem in the linear case (see [14]).

6. Conclusion. . . or beginning?

Gromov’s theorem is an example of the deep and rich physical results that can be obtained
by a careful analysis of the symplectic structure underlying mechanics; it is in that sense a
perfect illustration of what Gotay and Isenberg [10] call the ‘symplectization of Science’; also
see Tuynman’s interesting paper [22] on ‘prequantization’. From a purely physical point of
view, the theory we have sketched is semi-classical (it leads to the Keller–Maslov quantum
condition, which is known to hold only in the limit of large quantum numbers; see [3] for
numerous examples). It can be used to justify the axiomatic presentation we have given of
semi-classical mechanics in [7,8]. It would be very interesting to investigate whether Gromov’s
theorem (or related topological properties) could be used to obtain a better understanding of
the following points:

• As pointed out in remark 11, the passage from the ground-state condition (9) to the Keller–
Maslov quantization condition (10) for excited states requires an extraneous hypothesis
(either a purely physical assumption, Planck’s law or a mathematical assumption), the
single-valuedness of some ‘phase-space wavefunctions’. Perhaps a modification of our
basic postulates (1)–(2), or the addition of another ‘topological’ postulate could allow one
to recover the excited states, too.

• The Keller–Maslov quantization condition is only exact for physical systems with
quadratic Hamiltonian functions (see for instance [3, 15, 16]). It would be interesting
to investigate whether there is some kind of ‘quantum Gromov theorem’ allowing us to
retrieve the Keller–Maslov condition (10) without invoking any WKB argument. This
would probably also shed some light on the quantization of non-integrable systems. The
first step towards such a theory could very well lie in a restatement of postulate 1 in terms
of ‘symplectic cells’ in the group Sp(n) together with a study of the ‘monodromy’ of the
orbits.
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Let us conclude by noting that our results indicate that even classical (Hamiltonian)
mechanics can have some of the characteristics of quantum mechanics. In particular,
proposition 12 shows that one should be careful when using classical well known ‘obvious’
results such as Liouville’s theorem, in particular when dealing with classical chaos. It is likely
that the principle of the symplectic camel introduces limitations in chaotic behaviour, similar to
those imposed by standard quantum mechanics. It would perhaps be interesting to reexamine
Berry’s discussion [2] of the motion of hyperion from this point of view.
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